Hand-Held Documenting Process Calibrator

High accuracy 2 channel temperature, signal and pressure multifunction calibrator

Wide range of applications

MicroCal 20 DPC (Documenting

Process Calibrator) series are handheld, high accuracy, process multifunction calibrators. General features include: dual (simultaneous IN-OUT or simultaneous IN-IN) insolated channels, two internal pressure sensors, external pressure modules, automatic calibration procedure, large graphic and backlit display.

Dual input channels

Both channels (CH1 and CH2) can be set for simultaneous input. You can use the calibrator as a two channel high accuracy thermometer for TCs and RTDs certification.

4-wire resistance thermometer

Resistance and temperature with resistance thermometer may be measured on a 2, 3 and 4 wire connections for best accuracy and resolution (0.01°F). The instrument is compatible with pulsed transmitters.

Rj compensation

Accurate and fast response compensation, through a special low thermal capacity design of binding posts, incorporating a thin film high accuracy Pt100 as cold junction reference. The internal reference allows the maximum accuracy for the 15°F to +130°F temperature range. A remote Pt100 sensor can be connected for special application (from 15 to +212°F). It is possible to set manually the compensation temperature (from -60 to +212°F) by keyboard.

Frequency - Counts

Simulation mode is designed to generate a zero based square pulse, with an adjustable amplitude, at a frequency up to 20 KHz. A preset number of pulses may be programmed and transmitted to test or calibrate totalizers and counters. The instrument can be configured to measure frequency and count pulse (totalizer mode). Technical units in Hz, pulse/h and pulse/m. The threshold is adjustable from 0 to 20 V with 0.01 V resolution.

Internal pressure sensors

Optional one or two built-in pressure sensors are available to cover main pressure application including gauge, differential, absolute, and vacuum. The calibration matrix pressure/temperature is stored in internal non volatile memory.

External pressure modules

Each unit is equipped with a connector for external pressure "smart" modules. A wide selection of modules are available as accessories for ranges up to 10,150 psi. The calibration matrix pressure/temperature is stored in internal non volatile memory.

Built-in environmental module

Ambient temperature, Relative Humidity, and Barometric pressure sensors can measure environmental condition (EC) parameters to be included in calibration report.

Firmware

The firmware is stored on a flash memory and allows a fast and easy upgrade of the instrument using a RS232 and PC software.

Simulation capability

- Autoramp and Autostep capability with Start, End, and Step programmable parameters;
- Single and continuous cycle with Start, End, Rises, Soaks, and Falls programmable parameters;
- the signal value setting uses a unique in-line single-digit setting mode or a direct numeric entry;
- direct keyboard access to n.10 programmable memory stored values;

Programmable signal converter (TRX)

The instrument can be used as a temporary signal converter replacement. Any input signal (including pressure and remote auxiliary inputs) can be converted into any of the available output signals (V and mA). The galvanic insulation between the input and output channels allow also to use of this feature on the process.

Calculator

A special calculator function is integrated in MicroCal 20 DPC. You can read the value from the input channel, operate on it, and then write the result on the output channel. All standard math functions are included.

Scale factor - Math functions

All non temperature ranges are fully programmable to read both input and output values in terms of engineering unit. Four programmable alphanumeric characters are available on the display to show the symbol of the parameter (i.e. mbar, % RH, % CO, etc.). Square root function is used to calibrate ΔP flow transmitters.

An advanced Math library is available to create non linear conversion routines to be applied to input and/or output signals. You can use the PC software to write and download your special formula. Tare function is available to zeroing

sensor offset.

Average can be applied to unstable signals.

Data logging

The calibrator can be used as a two channel datalogger. The graphic mode allows you to display the trend; the Replay function allows you to generate the electrical signal using the data stored. The LogMan PC software permits storage

Patent pending "Push & Lock" binding posts

The MicroCal 20 includes 3 different connection systems:

- **Standard banana plugs**
- Mini isothermic TC's connector
- Push & Lock system for wires

All descriptions are related to a fully optioned instrument. See last page for the different configurations.

Multifunction unit to document your calibration activities

Documenting calibration procedures

of data on the hard-disk.

Switch test

Temperature, signal and pressure switches can be tested using this advanced procedure. The calibrator will hold the display reading when the contact changes status.

Multilingual user interface

It displays any text or menu in the most common linguage.

Report of Calibration

Each MicroCal is factory calibrated and certified against Eurotron Standards, that are periodically certified by an Internationally recognized Laboratory to ensure traceability, and shipped with a Report of Calibration stating the nominal and actual values and the deviation errors.

Over-Voltage protection

The unit is equipped with an advanced system including thermal fuse (autorepair do not need replacement), high voltage suppressor and resistor-diode voltage limiter.

EMC Conformity

The instrument fulfils the provisions of the directive 89/336/CEE Electromagnetic Compatibility.

Quality system

Research, development, production, inspection and certification activities are defined by methods and procedures of the Eurotron Quality System inspected for compliance and certified ISO9001 by GASTEC, a Dutch notified body.

Hand-free operations

The MicroCal 20 DPC has a RS232 interface to download procedures created with CalpMan software. With expanded memory, the MicroCal 20 DPC can store a full week of calibrations.

CalpMan 2000 software

The Calibration Procedure Manager software is able to transfer calibration routines (test points, error and warning bands, etc.) from a PC to the internal memory of the instrument in order to

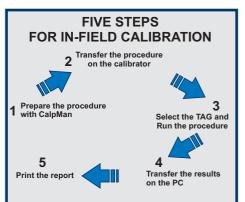
automate field calibrations. Select the appropriate tag number by keyboard directly, the calibrator will ask you step by step for all operation and test and calibration data ("As found" and "As left" values) can be memory stored. Upload your calibration data back to your PC. Print reports or export data.

CalpMan 2000 calibration procedure manager, is designed to support all Eurotron portable Calibrators. It includes an

instrumentation database which makes it quick and easy to generate and manage calibration procedures, set and read data from Eurotron calibrators, store the data on a database and generate a calibration report.

Eurotron CalpMan 2000 help you to document the calibration/inspection activities.

Extended memory card


Calibration procedure and data logging can be stored on the internal standard memory. The unit is equipped with internal slot for flash memory card to extend the basic capacity.

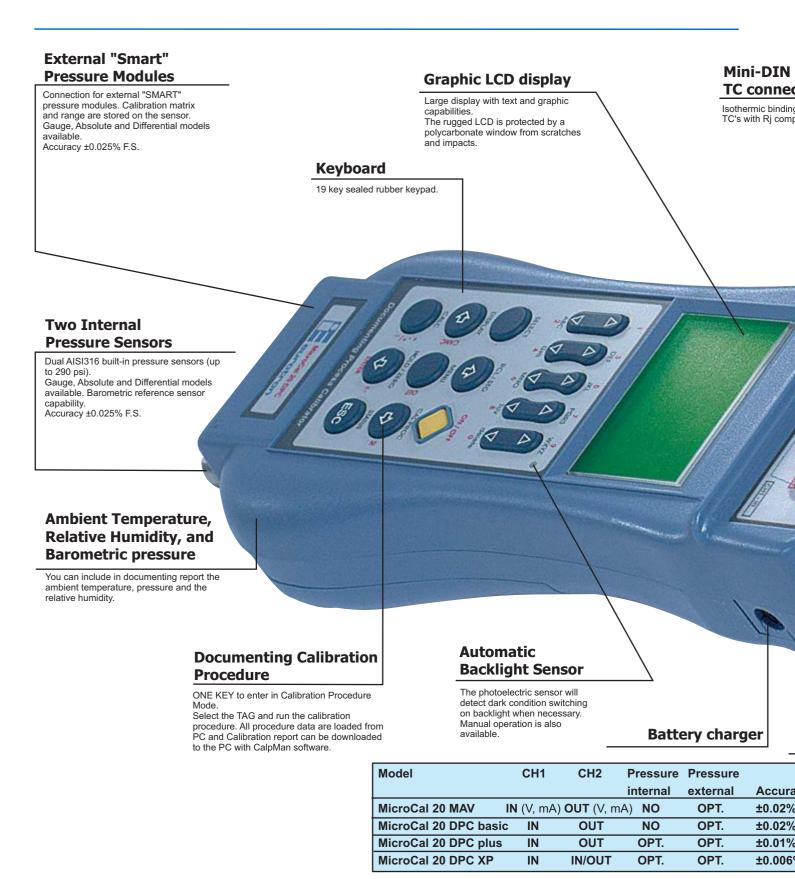
LogMan Software Windows[™] software to download logged data from internal memory to PC. Data can be saved on disks, loaded from disks, exported in Excel format file.

LinMan Software

Windows[™] software to setup the instrument with TCX, RTDX special linearization. The program allows highly accurate temperature measurement with a calibrated Pt100/TC loading the coefficients of the Calibration Report.

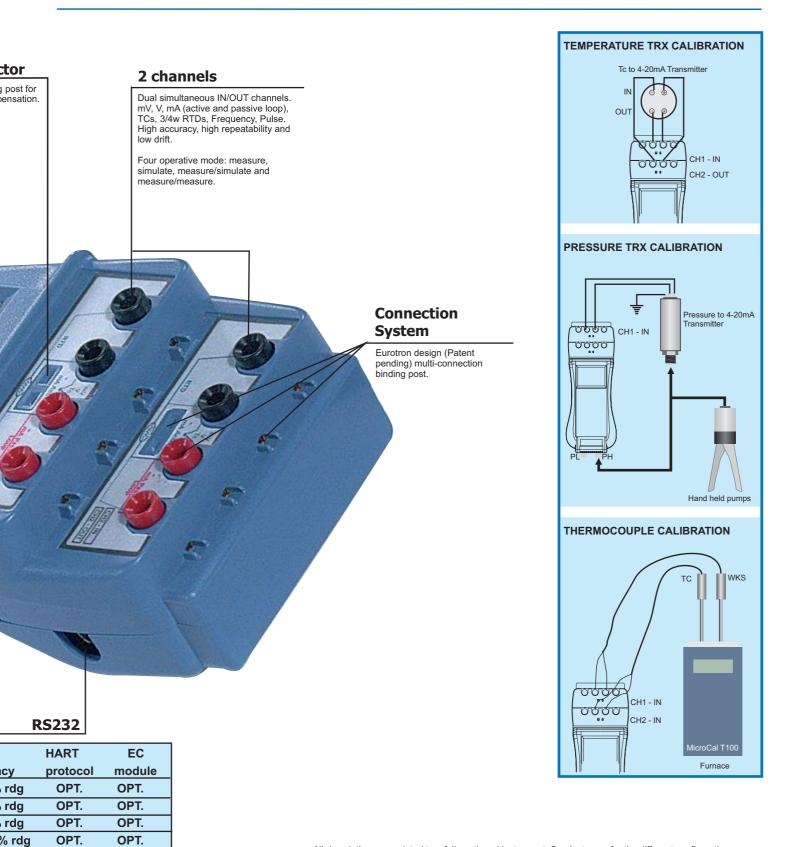
MicroCal T Dry-block communication module

You can combine MicroCal 20 DPC with the MicroCal T series for automatic temperature calibrator. It includes the firmware upgrade to enable capability and the Connection cable.



HART communication

MicroCal 20 DPC has a built-in option for HART calibration and maintenance. No external adapter is required. It supports The most popular HART transmitters with specific device commands (pls. check updated list on web site). The flash memory firmware allows to upgrade to latest models simply using PC software and RS232 cable.



Highlights

Modular design giving total flexibility

Applications

Multifunction documenting process calibrator

Features

Measure and Simulation of Active and Passive 4-20 mA current loop

Measure and Simulation of 14 different thermocouples

Measure and Simulation of 14 different resistance thermometers (2, 3 and 4 wires connections)

Pressure calibration with 2 internal + external sensors: ranges up to 300 psi (internal) and up to 10,150 psi (external)

Transmitter and signal converter simulations

Autoramp and Autostep capability

Data Logging and Graphs

Programmable advanced math functions on the input channels

Measure and Simulation of DC Voltage: ranges 0-200mV, 0-2V, and 0-20V

Measure and Simulation of resistance: ranges 0-500 Ω and $\mathbf{0-5k}\Omega$

Measure and simulation of frequency and pulse

CalpMan 2000 Windows[™] software for documenting calibration procedure

Built-in ambient temperature, relative humidity, and barometric pressure module

Specifications

IN/OUT Voltage Input impedance:

>10 M Ω for ranges up to 2000 mV f.s. >500 k Ω for ranges up to 20 V f.s. Output impedance (emf output):

less than 0.5 Ω with a maximum current of 0.5 mA

Output noise (at 300 Hz): <2 µVpp for ranges up to 200 mV f.s., <10 µVpp for ranges up to 2000 mV f.s. <80 µVpp for ranges up to 20 V f.s.

IN/OUT Current

Input impedance: <20 Ω at 1 mA

IN/OUT Resistance and RTDs

Connections: 2, 3 and 4 wires Source resistance effects: ±1 µV error for 1000Ω source resistance

Rtd and Ω simulation excitation current: from 0.100 to 2 mA without incremental error Rtd and Ω measurement excitation current: 0.2 mA

Rtd cable compensation: up to 100 m Ω (for each wire)

Rtd cable compensation error (Pt100): $\pm 0.005^{\circ}$ C/ Ω of total wire

Maximum load resistance: 1000Ω at 20 mA

IN/OUT Thermocouples

Engineering unit: °C/°F/K selectable best Resolution: 0.01°C / 0.01°F Temperature scale: ITS90 and IPTS68 selectables

Reference junction compensation: internal automatic from 15 °F to +130 °F external adjustable from -60 °F to +212 °F remote with external Pt100 from 15°F to +212 °F (only on XP model)

Rj compensation drift: ± 0.004 °F/°F (from 15 °F to +115 °F) - Class A Pt100 Input impedance (Tc ranges): >10 M Ω

Frequency

 Range
 Res.
 Accuracy

 1 to 200 Hz
 0.001Hz
 ±(0.005% rdg. + 0.001Hz)

 1 to 2 kHz
 0.01Hz
 ±(0.005% rdg. + 0.01Hz)

 1 to 20 kHz
 0.1Hz
 ±(0.005% rdg. + 0.01Hz)

 1 to 20 kHz
 0.1Hz
 ±(0.005% rdg. + 0.1Hz)
Imput inpedance:>500KΩ

Pulse

Resolution Range 0 to 10° 1 count

Pressure

Pressure media: AISI 316 SS compatible fluids (water, gas, and oil) Temperature compensation: Automatic with built-in calibration matrix. Engineering units: mbar, bar, Pa, hPa, kPa, MPa, kg/cm², kg/m², psi, mmH₂O, cmH₂O, mH₂O, Torr, atm, lb/ft², inH₂O, ftH₂O, mmHg, cmHg, mHg, inHg, programmable. Accuracy: the above accuracies are stated for 365 days and includes non linearity,

temperature coefficient, inside the temperature compensated range, is ±0.002% of rdg/°C (w.t.r. +23°C/+73°F). Compensation temperature range: +0 to +45°C (+32°F +113°F)

Internal sensors

Accuracy: ±0.025% F.S. Ranges: see table on ordering code **Resolution**: see table on ordering code Overpressure: 125% F.S. Port: (female) 1/8 BSP

External modules

Accuracy: ±0.025% F.S. Ranges: see table on ordering code Resolution: see table on ordering code Overpressure: 125% F.S. Port: (male) 1/4 BSP Connection wire lenght: 2 meters

Math functions

Calculation functions: hold, max, min, offset, zero, average In/Out data memory: 10 data with manual or automatic recall Convert function: displays the electrical equivalent of the engineering unit Scale factor: setting with zero and span programmable within -399999 and +999999 Square root: in combination with scale factor

General

Calibration: self learning technique with automatic procedure Channel 1-Channel 2 insulation: 250 Vdc Common mode rejection: 140 dB at ac operation Normal mode rejection:60 dB at 50/60 Hz **Display:** graphic LCD display with automatic and manual backlight device Measurement sampling time: 250 ms Digital interface: full bidirectional RS232 Power supply: external charger and rechargeable Ni-MH battery Battery life (typical): 10 h on Tc and mV input/output (backlight Off) 4 h with 20 mA simulation (backlight Off) Recharging time (typical): 5 h at 90% and 6 h at 99% with instrument switched off.

Battery charge indication: bar graph on the LCD display (flashing on charge) Line operation: 100V - 120 V - 230V - 240

Vac with the external battery charger

Line transformer insulation: 2500 Vac Operating environment temperature range: from 15 °F to +130 °F

Storage temperature range: from 32 °F to +140 °F (excluding batteries)

Humidity: max 95%RH non condensing Case: Injection moulded policarbonate case Sealing: IP54

Weights: nett 3 lbs gross 5.5 lbs Dimensions: 290x98x57 mm (11.4"X3.9"X2.2") Warranty: 2 Years. Contract extension up to 5 Years (pressure sensors not included).

All descriptions are related to a fully optioned instrument. See last page for the different configurations.

Ranges and Accuracy

MicroCal 20 MAVMicroCal 20 DPC basidMicroCal 20 DPC plusMicroCal 20 DPC XPTc J-210 to 1200°C0.01 °C* $\pm (0.02\% rdg, + 0.1°C)$ $\pm (0.01\% rdg, + 0.1°C)$ $\pm (0.01\% rdg, + 0.1°C)$ $\pm (0.01\% rdg, + 0.1°C)$ -350 to 2200°F0.01 °C $\pm (0.02\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ Tc K-270 to 1370°C0.01 °C $\pm (0.02\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ Tc T-270 to 400°C0.01 °C $\pm (0.02\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.2°F)$ Tc T-270 to 1760°C0.1°C $\pm (0.02\% rdg, + 0.2°F)$ $\pm (0.01\% rdg, + 0.1°C)$ $\pm (0.01\% rdg, + 0.2°F)$ Tc R-50 to 1760°C0.1°C $\pm (0.02\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ -60 to 3200°F0.1°C $\pm (0.02\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ -60 to 3200°F0.1°C $\pm (0.02\% rdg, + 0.4°F)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.02\% rdg, + 0.4°F)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.02\% rdg, + 0.4°F)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.4°F)$ $\pm (0.01\% rdg, + 0.4°F)$ Tc R-50 to 1760°C $0.1°C$ $\pm (0.02\% rdg, + 0.4°F)$ $\pm (0.01\% rdg, + 0.2°C)$ $\pm (0.01\% rdg, + 0.4°F)$ Tc S-50 to 1820°C $0.1°C$ $\pm (0.02\% rdg, + 0.3°C)$ $\pm (0.01\% rdg, + 0.$	Doromotor	Range	Resolutior		٨٥٥	uracy (% of reading)	
	Parameter	Kange	Resolution			• • • • • •	MicroCal 20 DPC XP
$ \begin{array}{c} -350 \mbox{1} 2200 \mbox{F} & 0.01 \mbox{F} & 100 \mbox{T} &$					MICIOCAI 20 DFC DASIC	Microcal 20 DFC plus	
Te K -270 to 1370°C 0.01 °C ±(0.02% rdg + 0.1°C) ±(0.01% rdg + 0.1°C) ±(0.01% rdg + 0.1°C) ±(0.01% rdg + 0.1°C) To T -270 to 400°C 0.01°C ±(0.02% rdg + 0.1°C) ±(0.01% rdg + 0.2°C) ±(0.01% rdg + 0.2°C) <td>Tc J</td> <td>-210 to 1200°C</td> <td>0.01 °C*</td> <td></td> <td>±(0.02% rdg. + 0.1°C)</td> <td></td> <td>±(0.01% rdg. + 0.1°C)</td>	Tc J	-210 to 1200°C	0.01 °C*		±(0.02% rdg. + 0.1°C)		±(0.01% rdg. + 0.1°C)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Тс К						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Тс Т						
Te S -500 1760°C 0.1°C +1002% dg0.2°C +1001% dg. +0.2°C +1001% dg. +0.2°C Te B 500 1820°C 0.1°C +1002% dg. +0.4°C +1001% dg. +0.3°C +1001% dg. +0.3°C Te B 500 1820°C 0.1°C +1002% dg. +0.3°C +1001% dg. +0.3°C +1001% dg. +0.3°C Te G 0.1280°C 0.1°C +1002% dg. +0.3°C +1001% dg. +0.2°C +1001% dg. +0.3°C Zio A170°F 0.1°C +1002% dg. +0.3°C +1001% dg. +0.3°C +1001% dg. +0.3°C Zio A170°F 0.1°C +1002% dg. +0.3°C +1001% dg. +0.3°C +1001% dg. +0.3°C Zio A170°F 0.1°C +1002% dg. +0.3°C +1001% dg. +0.3°C +1001% dg. +0.3°C Zio A170°F 0.1°C +1002% dg. +0.3°C +1001% dg. +0.3°C +1001% dg. +0.3°C Zio A170°F 0.1°C +1002% dg. +0.3°C +1001% dg. +0.1°C +1001% dg. +0.2°C Te U -200 ta 760°C 0.0°C +1002% dg. +0.1°C +1001% dg. +0.1°C +1001% dg. +0.2°C Te U -200 ta 760°C 0.0°C +1002% dg. +0.1°C +1001% dg. +0.1°C +1001% dg. +0.	Tc R				, s		
	T. 0						
Te B 50 to 1820°C 0.1°C ±(0.02% rdg.+ 0.3°C) ±(0.01% rdg.+ 0.3°C) ±(0.01% rdg.+ 0.3°C) Te C 0 to 2300°C 0.1°C ±(0.02% rdg.+ 0.2°C) ±(0.01% rdg.+ 0.3°C) ±(0.01% rdg.+ 0.3°C) Te G 0 to 2300°C 0.1°C ±(0.02% rdg.+ 0.2°C) ±(0.01% rdg.+ 0.4°C) ±(0.01% rdg.+ 0.4°C) ±(0.01% rdg.+ 0.3°C) Te G 0 to 2300°C 0.1°C ±(0.02% rdg.+ 0.3°C) ±(0.01% rdg.+ 0.4°C)	IC S						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ToP						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ГСБ						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TeC						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc G						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10 0						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc D						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc U						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc L		0.01°C		±(0.02% rdg. + 0.1°C)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-330 to 1400°F	0.01°F		±(0.02% rdg. + 0.2°F)	±(0.01% rdg. + 0.2°F)	<u>±(0.01% rdg. + 0.2°F)</u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tc N	-270 to 1300°C			±(0.02% rdg. + 0.1°C)	±(0.01% rdg. + 0.1°C)	±(0.01% rdg. + 0.1°C)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					±(0.02% rdg. + 0.2°F)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tc E						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c} \textbf{Pt100} \mbox{IEC}, & -200 \mbox{to} 850^{\circ} \mbox{C} & 0.01^{\circ} \mbox{C} & \pm (0.02\% \mbox{rdg}, + 0.05^{\circ} \mbox{C}) & \pm (0.01\% \mbox{rdg}, + 0.27^{\circ} \mbox{L}) & \pm (0.01\% \mbox{rdg}, + 0.$	Tc F				, s	,	, s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B //00/50						
$ \begin{array}{c} \textbf{Pt100} & -200 \ \text{to} \ 50^{\circ}\text{C} & 0.01^{\circ}\text{C} \\ ar = 3902 & -330 \ ta \ 1210^{\circ}\text{F} & 0.01^{\circ}\text{F} \\ -330 \ ta \ 1210^{\circ}\text{F} & 0.01^{\circ}\text{F} \\ + (0.02\% \ rdg. + 0.05^{\circ}\text{C}) \\ \pm (0.02\% \ rdg. + 0.05^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.15^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.15^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.1^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.2^{\circ}\text{F}) \\ \pm (0.01\% \ rdg. + 0.4^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.4^{\circ}\text{C}) \\ \pm (0.01\% \ rdg. + 0.2^{\circ}\text{F}) \\ \pm (0.01\% \ rdg$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Pt100-200 to 600°C0.01°C $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ JJS. SAMA-330 to 1120°F0.1°C $\pm (0.02\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ Pt200-200 to 850°C0.1°C $\pm (0.02\% rdg. + 0.15°C)$ $\pm (0.01\% rdg. + 0.15°C)$ $\pm (0.01\% rdg. + 0.15°C)$ $\pm (0.01\% rdg. + 0.15°C)$ Pt500-200 to 850°C0.1°C $\pm (0.02\% rdg. + 0.27°E)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ Pt500-200 to 850°C0.1°C $\pm (0.02\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ Pt100-200 to 850°C0.01°C $\pm (0.02\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ Dev-200 to 850°C0.01°C $\pm (0.02\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.2°F)$ Cu10-330 to 157°C F0.01°C $\pm (0.02\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.4°C)$ 0 r100 to 310°F0.1°F $\pm (0.02\% rdg. + 0.7°F)$ $\pm (0.01\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ 0 r100-60 to 180°C0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ 0 r100-60 to 180°C0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.$, J	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						()	
Pt200-200 to 850°C0.1°C $\pm (0.02\% rdg. + 0.15°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.2°E)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.2°E)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg.$						(,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							· · · · · · · · · · · · · · · · · · ·
Pt500 $-200 \text{ to } 850^{\circ}\text{C}$ 0.1°C $\pm (0.02\% \text{ rdg.} + 0.1^{\circ}\text{C})$ $\pm (0.01\% \text{ rdg.} + 0.2^{\circ}\text{F})$ $\pm (0.01\% \text{ rdg.} + 0$	Pt200					, J	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D/500					1 0 /	
Pt1000-200 to 850°C0.01°C $\pm (0.02\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ $\pm (0.01\% rdg. + 0.1°C)$ IEC. OIML-330 to 1570°F0.01°F $\pm (0.02\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.2°F)$ $\pm (0.01\% rdg. + 0.2°F)$ Cu10-70 to 150°C0.1°C $\pm (0.02\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.7°E)$ $\pm (0.01\% rdg. + 0.7°E)$ Cu100-100 to 310°F0.1°F $\pm (0.02\% rdg. + 0.4°C)$ $\pm (0.01\% rdg. + 0.7°E)$ $\pm (0.01\% rdg. + 0.7°E)$ $\pm (0.01\% rdg. + 0.7°E)$ Cu100-180 to 150°C0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ Ni100-60 to 180°C0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ Ni1200 to 150°C0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ Ni1200 to 150°C0.1°F $\pm (0.02\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ Mill $2 to 310°F$ 0.1°F $\pm (0.02\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ $\pm (0.01\% rdg. + 0.09°F)$ Mill $2 to 310°F$ $0.1°F$ $\pm (0.02\% rdg. + 10\muV)$ $\pm (0.02\% rdg. + 10\muV)$ $\pm (0.01\% rdg. + 10\muV)$ $2 to 20V$ 10µV $\pm (0.02\% rdg. + 10\muV)$ $\pm (0.02\% rdg. + 10\muV)$ $\pm (0.01\% rdg. + 10\muV)$ $\pm (0.01\% rdg. + 0.4\muA)$ $2 to 20V$ 10µV $\pm (0.02\% rdg. + 10\muV)$ $\pm (0.02\% rdg. + 0.4\muA)$ $\pm (0$	Pt500						$\pm (0.01\% \text{ rdg.} + 0.1\% \text{C})$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D44000						
$ \begin{array}{c} { { Cu10 } \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Culo						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu100				· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Guillo						+(0.01% rda + 0.09% F)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni100						
Ni1200 to 150°C 32 to 310°F0.1°C 0.1°F $\pm (0.02\% rdg. + 0.05°C)$ $\pm (0.02\% rdg. + 0.09°F)\pm (0.01\% rdg. + 0.05°C)\pm (0.01\% rdg. + 0.09°F)\pm (0.01\% rdg. + 0.09°C)\pm (0.01\% rdg. + 0.09°F)\pm (0.01\% rdg. + 0.09°C)\pm (0.01\% rdg. + 0.09°F)mV-20 to 200mV1µV\pm (0.02\% rdg. + 3 µV)\pm (0.02\% rdg. + 3 µV)\pm (0.02\% rdg. + 10 µV)\pm (0.01\% rdg. + 3 µV)\pm (0.01\% rdg. + 10 µV)V-0.2 to 2V10µV\pm (0.02\% rdg. + 100 µV)\pm (0.02\% rdg. + 10 µV)\pm (0.02\% rdg. + 100 µV)\pm (0.01\% rdg. + 100 µV)\pm (0.01\% rdg. + 100 µV)mA (IN)5 to 50mA0.1µA\pm (0.02\% rdg. + 0.4µA)\pm (0.02\% rdg. + 0.4µA)\pm (0.02\% rdg. + 0.4µA)\pm (0.01\% rdg. + 0.4µA)\pm (0.01\% rdg. + 0.4µA)\Omega (IN)0 to 500\Omega10m\Omega10mQ\pm (0.02\% rdg. + 12m\Omega)\pm (0.02\% rdg. + 12m\Omega)\pm (0.01\% rdg. + 12m\Omega)\pm (0.01\% rdg. + 120m\Omega)$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni120						
mV-20 to 200mV1μV $\pm (0.02\% \text{ rdg.} + 3 \mu V)$ $\pm (0.02\% \text{ rdg.} + 3 \mu V)$ $\pm (0.01\% \text{ rdg.} + 3 \mu V)$ $\pm (0.006\% \text{ rdg.} + 3 \mu V)$ V-0.2 to 2V10μV $\pm (0.02\% \text{ rdg.} + 10 \mu V)$ $\pm (0.02\% \text{ rdg.} + 10 \mu V)$ $\pm (0.01\% \text{ rdg.} + 10 \mu V)$ $\pm (0.006\% \text{ rdg.} + 10 \mu V)$ -2 to 20V100µV $\pm (0.02\% \text{ rdg.} + 100 \mu V)$ $\pm (0.02\% \text{ rdg.} + 100 \mu V)$ $\pm (0.01\% \text{ rdg.} + 100 \mu V)$ $\pm (0.006\% \text{ rdg.} + 100 \mu V)$ mA (IN)5 to 50mA $0.1\muA$ $\pm (0.02\% \text{ rdg.} + 0.4\muA)$ $\pm (0.02\% \text{ rdg.} + 0.4\muA)$ $\pm (0.01\% \text{ rdg.} + 0.4\muA)$ $\pm (0.01\% \text{ rdg.} + 0.4\muA)$ mA (OUT)0 to 50mA** $0.1\muA$ $\pm (0.02\% \text{ rdg.} + 0.4\muA)$ $\pm (0.02\% \text{ rdg.} + 0.4\muA)$ $\pm (0.01\% \text{ rdg.} + 0.4\muA)$ $\pm (0.01\% \text{ rdg.} + 0.4\muA)$ Ω (IN)0 to 500\Omega10mΩ $10m\Omega$ $\pm (0.02\% \text{ rdg.} + 12m\Omega\Omega)$ $\pm (0.01\% \text{ rdg.} + 12m\Omega\Omega)$ $\pm (0.008\% \text{ rdg.} + 12m\Omega)$ $0 \text{ to } 5000\Omega$ 100m\Omega $100m\Omega$ $\pm (0.02\% \text{ rdg.} + 120m\Omega)$ $\pm (0.01\% \text{ rdg.} + 120m\Omega)$ $\pm (0.008\% \text{ rdg.} + 120m\Omega)$							
V-0.2 to 2V10µV \pm (0.02% rdg. + 10 µV) \pm (0.02% rdg. + 10 µV) \pm (0.01% rdg. + 10 µV) \pm (0.006% rdg. + 10 µV)2 to 20V100µV \pm (0.02% rdg. + 100 µV) \pm (0.02% rdg. + 100 µV) \pm (0.01% rdg. + 100 µV) \pm (0.006% rdg. + 100 µV)mA (IN)5 to 50mA0.1µA \pm (0.02% rdg. + 0.4µA) \pm (0.02% rdg. + 0.4µA) \pm (0.01% rdg. + 0.4µA) \pm (0.01% rdg. + 0.4µA)mA (OUT)0 to 50mA**0.1µA \pm (0.02% rdg. + 0.4µA) \pm (0.02% rdg. + 0.4µA) \pm (0.01% rdg. + 0.4µA) \pm (0.01% rdg. + 0.4µA)Ω (IN)0 to 500Ω10mΩ \pm (0.02% rdg. + 12mΩ) \pm (0.01% rdg. + 12mΩ) \pm (0.008% rdg. + 12mΩ) \pm (0.02% rdg. + 120mΩ) \pm (0.01% rdg. + 120mΩ) \pm (0.008% rdg. + 120mΩ)	mV			±(0.02% rda. + 3 μV)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					1		
mA (IN) 5 to 50mA 0.1μA \pm (0.02% rdg. + 0.4μA) \pm (0.02% rdg. + 0.4μA) \pm (0.01% rdg. + 0.4μA) \pm (0.01% rdg. + 0.4μA) mA (OUT) 0 to 50mA** 0.1μA \pm (0.02% rdg. + 0.4μA) \pm (0.02% rdg. + 0.4μA) \pm (0.01% rdg. + 0.4μA) \pm (0.01% rdg. + 0.4μA) Ω (IN) 0 to 500Ω 10mΩ \pm (0.02% rdg. + 12mΩ) \pm (0.01% rdg. + 12mΩ) \pm (0.008% rdg. + 12mΩ) 0 to 5000Ω 100mΩ \pm (0.02% rdg. + 120mΩ) \pm (0.01% rdg. + 120mΩ) \pm (0.008% rdg. + 120mΩ)			•	()		,	
mA (OUT) 0 to 50mA** 0.1μA ±(0.02% rdg. + 0.4μA) ±(0.02% rdg. + 0.4μA) ±(0.01% rdg. + 0.4μA) ±(0.01% rdg. + 0.4μA) Ω (IN) 0 to 500Ω 10mΩ ±(0.02% rdg. + 12mΩ) ±(0.01% rdg. + 12mΩ) ±(0.008% rdg. + 12mΩ) 0 to 5000Ω 100mΩ ±(0.02% rdg. + 120mΩ) ±(0.01% rdg. + 12mΩ) ±(0.008% rdg. + 12mΩ)			•	0 1	1		
$ \Omega (IN) 0 to 500Ω 10mΩ ± (0.02% rdg. + 12mΩ) ± (0.01% rdg. + 12mΩ) ± (0.008% rdg. + 12mΩ) ± (0.008\% rdg. + 12mΩ$			•	_(, s
0 to 5000Ω 100mΩ ±(0.02% rdg. + 120mΩ) ±(0.01% rdg. + 120mΩ) ±(0.008% rdg. + 120mΩ)	. ,		•	$\pm(0.02\% \text{ rdg.} + 0.4\mu\text{A})$	• • • •	· • · /	
	Ω (IN)					· · · · · · · · · · · · · · · · · · ·	
Ω (OUT) 0 to 500Ω 10mΩ ±(0.02% rdg. + 20mΩ) ±(0.01% rdg. + 20mΩ) ±(0.008% rdg. + 20mΩ)		0 to 5000Ω	<u>100mΩ</u>		±(0.02% rdg. + 120mΩ)	<u>±(0.01% rdg. + 120mΩ)</u>	±(0.008% rdg. + 120mΩ)
	Ω (OUT)	0 to 500Ω	$10 \text{m}\Omega$		±(0.02% rdg. + 20mΩ)	±(0.01% rdg. + 20mΩ)	±(0.008% rdg. + 20mΩ)
	. ,				· · · · · · · · · · · · · · · · · · ·		· • • • /

Eurotron traceability chart and uncertainty can be supplied on request. * Resolution is 0.1°C with temperature lower than -200°C. ** 21mA max. on passive current loop.

The relative accuracies shown above are stated for 360 days and the operative conditions are from 18 to 28° C Typical 2 year relative accuracy can be estimated by multiplying the "% of reading" specifications by 1.4. All input ranges: additional error ± 1 digit.

4 models for your applications

Ordering Code

3925 MAV - A - 00 - C - D

MicroCal 20 DPC MAV : ±0.02% rdg 2 CH (IN - OUT) Voltage, Current and Frequency Calibrator

3925 basic - A - 00 - C - D

MicroCal 20 DPC basic: ±0.02% rdg 2 CH (IN - OUT) multifunction calibrator

3925 plus - A - BB - C - D

MicroCal 20 DPC plus: ±0.01% rdg 2 CH (IN - OUT) multifunction calibrator

3925 XP - A - BB - C - D

MicroCal 20 DPC XP: ±0.006% rdg 2CH (IN - IN/OUT) multifunction calibrator

Intrinsic Safety model will uses different code

Standard packing includes: calibrator, charger, instruction manual and report of calibration.

Table A		Line charger
MAV basic	plus XP	
1	1	120V 50/60 Hz with USA plug
2	2	230V 50/60 Hz with Schuko plug
3	3	230V 50/60 Hz with UK plug
4	4	230V 50/60 Hz with European plug
5	5	100V 50/60 Hz with USA/Japan plug

Table B	Internal pressure - AISI316SS - ±0.025% FS	
MAV	plus	
basic	XP	
0	0	None
	2	-40 to 40 in H_2O Gauge - res. 0.0004 in H_2O
	3	-200 to 200 in H_2O Gauge - res. 0.004 in H_2O
	5	-14 to 30 psi Gauge - res. 0.0001psi
	5A	30 psi Absolute - res. 0.0001psi
	6	-14 to 100 psi Gauge - res. 0.001psi
	7	-14 to 300 psi Gauge - res. 0.001psi
	7A	300 psi Absolute - res. 0.001 psi
IMPORTA	NT:	

MAV and **basic** models cannot install internal pressure sensors. plus and XP models can install up to 2 internal pressure sensors

Table C		Options
MAV	plus	
basic	XP	
0	0	none
1	1	HART protocol
2	2	EC module (T + RH% + barometric
		measurements)
3	3	Extended memory card
Table D		Report of calibration
MAV	plus	
basic	XP	
1	1	Eurotron Certificate

Accessories

EXTERNAL	PRESSURE MODULES - AISI 31	6SS - ±0.025% F.S.
GAUGE		
BB480009	from -100 to 100 mbar (1.5 PSI)	res. 0.001mbar
BB480010	from -500 to 500 mbar (7 PSI)	res. 0.01mbar
BB480011	from -0.95 to 1 bar (15 PSI)	res. 0.01mbar
BB480012	from -0.95 to 2 bar (30 PSI)	res. 0.01mbar
BB480013	from -0.95 to 7bar (100 PSI)	res. 0.1mbar
BB480014	from -0.95 to 20 bar (300 PSI)	res. 0.1mbar
BB480015	from -0.95 to 35 bar (500 PSI)	res. 1mbar
BB480016	from 0 to 70 bar (1000 PSI)	res. 1mbar
BB480017	from 0 to 150 bar (2000 PSI)	res. 1mbar
BB480018	from 0 to 350 bar (5000 PSI)	res. 10mbar
BB480019	from 0 to 700 bar (10000 PSI)	res. 10mbar
	_	

ABSOLUTE

BB480020 from 0 to 2 bar (30 PSI) res. 0.01mbar BB480021 from 0 to 20 bar (300 PSI) res. 0.1mbar

PNEUMATIC & HYDRAULIC PUMPS AND ACCESSORIES AVAILABLE **ON SEPARATE BULLETIN**

SOFTWARE

BB530203	RS232 adapter cable			
	LogMan-Data Logging software			
	LinMan-Linearization software			
BB260167	CalpMan 2000- Calibration Procedure Manager			
	MicroCal T series communication module			
MISCELLA	MISCELLANEOUS			

EE300040	Electrical signal test lead kit
EE300122	Tc cable connection kit
BB880048	Vinyl protection carrying case with shoulder strap
BB880043	Vinyl carrying case with shoulder strap
BB880033	Aluminum carrying case
BB880049	Rubber holster

Distributed by:

아이에스테크 ::: INTERNAL STANDARD TECHNOLOGY ::: 주소: 경기도 성남시 분당구 야탑3동 306-5번지 102호 우: 463-856 Tel: 82-31-704-2401 Fax: 82-31-704-2421

Http:// www.is77.co.kr E-mail: is@is77.co.kr